Rademacher Chaos Complexities for Learning the Kernel Problem
نویسندگان
چکیده
We develop a novel generalization bound for learning the kernel problem. First, we show that the generalization analysis of the kernel learning problem reduces to investigation of the suprema of the Rademacher chaos process of order 2 over candidate kernels, which we refer to as Rademacher chaos complexity. Next, we show how to estimate the empirical Rademacher chaos complexity by well-established metric entropy integrals and pseudo-dimension of the set of candidate kernels. Our new methodology mainly depends on the principal theory of U-processes and entropy integrals. Finally, we establish satisfactory excess generalization bounds and misclassification error rates for learning gaussian kernels and general radial basis kernels.
منابع مشابه
Generalization Bounds for Learning the Kernel Problem
In this paper we develop a novel probabilistic generalization bound for learning the kernel problem. First, we show that the generalization analysis of the regularized kernel learning system reduces to investigation of the suprema of the Rademacher chaos process of order two over candidate kernels, which we refer to as Rademacher chaos complexity. Next, we show how to estimate the empirical Rad...
متن کاملGeneralization Bounds for Learning the Kernel -
In this paper we develop a novel probabilistic generalization bound for learning the kernel problem. First, we show that the generalization analysis of the kernel learning algorithms reduces to investigation of the suprema of the Rademacher chaos process of order two over candidate kernels, which we refer to as Rademacher chaos complexity. Next, we show how to estimate the empirical Rademacher ...
متن کاملBounds for Learning the Kernel: Rademacher Chaos Complexity
In this paper we develop a novel probabilistic generalization bound for regularized kernel learning algorithms. First, we show that generalization analysis of kernel learning algorithms reduces to investigation of the suprema of homogeneous Rademacher chaos process of order two over candidate kernels, which we refer to it as Rademacher chaos complexity. Our new methodology is based on the princ...
متن کاملGeneralization Bounds for Learning the Kernel: Rademacher Chaos Complexity
One of the central issues in kernel methods [5] is the problem of kernel selection (learning). This problem has recently received considerable attention which can range from the width parameter selection of Gaussian kernels to obtaining an optimal linear combination from a set of finite candidate kernels, see [3, 4]. In the latter case, kernel learning problem is often termed multi-kernel learn...
متن کاملOn the Complexity of Learning the Kernel Matrix
We investigate data based procedures for selecting the kernel when learning with Support Vector Machines. We provide generalization error bounds by estimating the Rademacher complexities of the corresponding function classes. In particular we obtain a complexity bound for function classes induced by kernels with given eigenvectors, i.e., we allow to vary the spectrum and keep the eigenvectors f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 22 11 شماره
صفحات -
تاریخ انتشار 2010